Probabilistic Identification of Simulated Damage on the Dowling Hall Footbridge through Bayesian FE Model Updating

نویسندگان

  • Iman Behmanesh
  • Babak Moaveni
چکیده

This paper presents a probabilistic damage identification study on a full-scale structure, the Dowling Hall Footbridge, through a Bayesian finite element (FE) model updating. The footbridge is located at Tufts University and is equipped with a continuous monitoring system that measures its ambient acceleration response. A set of data is recorded once every hour or when triggered by large vibrations. The modal parameters of the footbridge are extracted from each set of data and are used for FE model updating. In this study, effects of physical damage are simulated by loading a small segment of the footbridge deck with concrete blocks. The footbridge deck is divided into five segments in a FE model of the test structure and the added mass on each segment is considered as an updating parameter. Overall, 72 sets of data are collected during the loading period and different subsets of these data are used to find the location and extent of the damage (added mass). The Adaptive Metropolis-Hastings algorithm with adaption on the proposal probability density function is successfully used to generate Markov Chains for sampling the posterior probability distributions of the five updating parameters. Effects of the number of data sets used in the identification process are investigated on the posterior probability distributions of the updating parameters. The probabilistic model updating framework accurately predicts the simulated damage and the level of confidence on the obtained results. The probabilistic damage identification results are found to be in good agreement with their corresponding deterministic counterparts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Changing Ambient Temperature on Finite Element Model Updating of the Dowling Hall Footbridge

In this paper, effects of changing ambient temperatures on finite element (FE) model updating of the Dowling Hall Footbridge are investigated. The Dowling Hall Footbridge is located on the Tufts University campus in Medford, Massachusetts. The footbridge is equipped with a continuous monitoring system that records vibration and temperature of the bridge once an hour or when triggered by large v...

متن کامل

Uncertainty quantification in vibration-based damage assessment by means of model updating

The success of vibration-based damage identification procedures depends significantly on the accuracy and completeness of the available identified modal parameters. This paper investigates the level of confidence in the damage identification results as a function of uncertainty in the identified modal parameters through a probabilistic damage identification strategy, i.e., Bayesian finite eleme...

متن کامل

Identification, Model Updating, and Validation of a Steel Twin Deck Curved Cable-Stayed Footbridge

To perform a realistic reliability analysis of a complex cable-stayed steel footbridge subject to natural hazard and corrosion, this article addresses a rational process of modeling and simulation based on identification, model updating, and validation. In particular, the object of this study is the Ponte del Mare footbridge located in Pescara, Italy; this bridge was selected as being a complex...

متن کامل

Probabilistic damage assessment of a seven-story RC building slice using Bayesian FE model updating

In this paper, Bayesian finite element (FE) model updating is applied for uncertainty quantification in the multi-stage damage assessment of a seven-story reinforced building slice. The results of the Bayesian updating scheme are analyzed using a detailed uncertainty and resolution analysis which involves computing the posterior statistics and solving an eigenvalue problem. It is shown that the...

متن کامل

A NEW APPROACH BASED ON FINITE ELEMENT MODEL UPDATING FOR STRUCTURAL DAMAGE IDENTIFICATION

In this study, the finite element model updating was simulated by reducing the stiffness of the members. Due to lack of access to the experimental results, the data obtained from an analytical model were used in the proposed structural damage scenarios. The updating parameters for the studied structures were defined as a reduction coefficient applied to the stiffness of the members. Parameter v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014